£ University of Stuttgart

Germany

Clustering for Stacked Edge Splatting

Moataz Abdelaal’, Marcel Hlawatsch', Michael Burch?, Daniel Weiskopf!

'University of Stuttgart, Germany
°TU Eindhoven, Netherlands

Joint Conference GCPR/VMV 2018 | University of Stuttgart, Stuttgart, Germany |
October 10-12, 2018

mgm v | atio rch Center
rsity fStttgr‘t



Overview

= Dynamic graph data

= Time-scalable overview
= Temporal patterns
= Temporal phases
= Structural information

stacking representation

A dynamic graph visualization depicting the US domestic flight dataset
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Related Work

= Reducing graphs to points

= @Graphs are considered points in high-
dimensional space

= Scalability concerns w.r.t. graph size and
number of time steps

= Harder to interpret the resulting
dimensions

Reducing Snapshots to Points
Van den Elzen et al. [vdEHBVW16]
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Adjacency matrices
Cubix
Small MultiPiles

Hard to use [GFCO5] in long and dense
dynamic graphs.

Matrix Previews

Cubix MultiPiles
Bach et al. [BPF14] Bach et al. [BHRD #15]

[GFCO5] GHONIEM M., FEKETE J., CASTAGLIOLA P.: On the readability of graphs
using node-link and matrix-based representations: a controlled experiment and
statistical analysis. Information Visualization 4, 2 (2005), 114-135. 2



Related Work

= Extended Massive Sequence View (MSV) » Visualizing a Sequence of a Thousand
= Support different clustering and Graphs

reordering techniques = Pushing the individual graphs together
= Circular MSV needs much screen space by an interleaving them

& introduces bias = Time-scalable but suffers from over-
drawing problems

= Temporal clustering not supported

(a) Non-optimized MSV.
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(b) Reordered MSV.

Circular MSV Visualizing a Sequence of a Thousand Graphs
Van den Elzen et al. [vdEHBVW13] Burch et al. [BHW17]
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Contributions

1) Introducing the stacked edge splatting representation

=  To avoid the over-drawing problems of the interleaving method -> uncover
temporal patterns

2)  Applying sequential temporal clustering
=  To identify temporal phases
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Visualization Technigue

Time | From To |Weight; @
1 a b 5
1 b d 2
1 d C 3
1 c b 4
1 d a 4
1 C a 2
1 a e 6
1 e d 1
s O
(a) Dataset (b) Node-link diagram (c) Bipartite graph layout (d) Ordered bipartite graph layout (e) Parallel edge splatting

[BVB*11]

* Vertices are hierarchically clustered and then reordered by computing Jaccard similarities

[BVB#11] BURCH M., VEHLOW C., BECK F., DIEHL S., WEISKOPF D.: Parallel edge

ms m Visualization Research Center splatting for scalable dynamic graph visualization. /EEE Transactions on 6

University of Stuttgart Visualization and Computer Graphics 17, 12 (2011), 2344-2353. 2, 3



(e) Parallel edge splatting
[BVB*11]

(f) Interleaving method
[BHW17]
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[BVB*11] BURCH M., VEHLOW C., BECK F., DIEHL S., WEISKOPF D.: Parallel edge splatting for scalable dynamic
graph visualization. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2344-2353. 2, 3

[BHW17] BURCH M., HLAWATSCH M., WEISKOPF D.: Visualizing a sequence of a thousand graphs (or even more).

m m Visualization Research Center Computer Graphics Forum 36, 3 (2017), 261-271. 2, 3
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representative graph

(e) Parallel edge splatting
[BVB*11]

(f) Interleaving method
[BHW17]
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First 159 timepoints of the flight dataset visualized using stacked edge splatting (top) and the interleaving method
(bottom). Temporal patterns are more recognizable in the top visualization
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Temporal Clustering

= Provides an overview of different temporal phases
= |mproves the edge-tracing task
= (Clustering is done sequentially by computing the Euclidian distance

t;is added to the cluster ¢;
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=

a new cluster creates for t

d: euclidian distance between m(t;) and m(c))
m(t,): adjacency matrix for the current timepoint ¢

m(c)): adjacency matrix for the aggregated timepoint
of the current cluster ¢;

p: given threshold
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Temporal Clustering

= collapsed view -> structural overview
= expanded view -> temporal details

Default view, all clusters are collapsed The last cluster is expanded
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When graphs are very dense

= Timepoint-expanding
= Edge-highlighting

Interaction techniques
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Application Example

= US domestic flight traffic dataset [Uni18]

= 30 years starting from October 1st, 1987, to December 31st, 2017
= The data is aggregated on a per-month basis

= 402 vertices (airports)

= ~71 million weighted edges (flight connections)

= 363 timepoints (graphs per month)
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[dentitying temporal phases

Oct. 1987 July 1993 June 1999 Jan. 2001 Sep. 2001 Jan. 2003 July 2004 Jan. 2006 Feb. 2009 July 2013 Jan. 2014
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Clusters’ added links

Clusters’ deleted links

Clusters’ representative
graphs

Sequentially clustering the flight dataset at a threshold of 1.1, resulting in 11 clusters
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Geographical Context

Vertex-clusters visualized on the map of the United States Dendrogram of the vertex-clusters hierarchies
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[dentitying temporal patterns

[70,140] [141,159]
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Stability Periodicity Shift Anomalies
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Conclusion

A time-scalable approach for visualizing dynamic graphs
The stacking representation
= To uncover temporal patterns
= To achieve time-scalability
Temporal clustering
= To identify temporal phases
= To improves the edge-tracing task
For future work
= QOther heuristics for temporal clustering
= Further evaluation
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Application Example (2)

= The software call graph dataset [JHo18]
= 787 vertices (software functions)

= 25,906 weighted edges (call relations)

= 1,077 timepoints
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http://www.jhotdraw.org/
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Subsequence 1
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Subsequence 2
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Subsequence 3




Investigating subseqguences

Subsequence 1 [47 — 449]
Subsequence 2 [450 - 812]

Subsequence 3 [813 - 1071]
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P: pattern (cluster)
T: transition (single timepoint)
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